
Session 5 - Dataframes

May 27, 2019

Table of Contents
Pandas Dataframes
Creating a simple DataFrame
Presenting results with DataFrames
Adjusting the index column
Extracting a subset of data
Importing data from file to DataFrame
Import example
Filtering data
Understanding the filtering process
Filtering by multiple conditions
Exporting a DataFrame to a file
GroupBy
An example
Documentation
Printing with df.head() and df.tail()
Something to be aware of
Much more functionality
When and why to use pandas
Exercise 1.1
Exercise 1.2
Exercse 1.3
Exercise 1.4
Exercise 2.1
Exercise 2.2
Exercise 2.3
Exercise 2.4
Exercise 2.5
If you are up for more

1 Pandas Dataframes

Python is very good for data analysis. Much of this is thanks to the pandas library, which contains
a wealth of powerful functions to load data and manipulate it.

In the pandas environment what we normally refer to as a table is called a DataFrame. Is the
data has only a single column, it is called a Series. These are the core objects in the library.

1

As with many libraries, there is a convection for renaming when importing. In pandas the
convention is to import as pd:

In [1]: import pandas as pd

1.1 Creating a simple DataFrame

A simple DataFrame can be created as with pandas.DataFrame():

In [2]: # Create a simple DataFrame
df = pd.DataFrame({'Column1': [11, 12, 13],

'Column2': [21, 22, 23],
'Column3': [31, 32, 33]})

df

Out[2]: Column1 Column2 Column3
0 11 21 31
1 12 22 32
2 13 23 33

• Note 1: The input argument for creating the DataFrame is a dictionary. I.e. a data structure
with keys-value pairs.

• Note 2: It automatically creates and index column as the leftmost column.

• Note 3: The displayed DataFrame looks nicer than the it would have in an editor. This is
because it is styled with HTML. In an editor, the printed DataFrame would look like this:

In [3]: # DataFrame as it would look without HTML-styling
print(df)

Column1 Column2 Column3
0 11 21 31
1 12 22 32
2 13 23 33

1.2 Presenting results with DataFrames

If we have a dictionary from a previous calculation of some kind, we can quickly turn it into a
DataFrame with the same pricinple as above:

In [4]: # Define normal force and cross sectional area
normal_force = [85, 56, 120]
area = [314, 314, 314]

Compute stress in cross section for all normal forces
stress = [n/a for n, a in zip(normal_force, area)]

Gather calculation results in dictionary

2

results = {'N [kN]': normal_force, 'A [mm2]': area, 'sigma_n [MPa]': stress}

Create a DataFrame of the results form the dictionary
df2 = pd.DataFrame(results)
df2

Out[4]: N [kN] A [mm2] sigma_n [MPa]
0 85 314 0.270701
1 56 314 0.178344
2 120 314 0.382166

1.2.1 Adjusting the index column

The default index (leftmost column) is not really suited for this particular scenario, so we could
change it to be “Load Case” and have it start at 1 instead of 0

In [5]: # Set the name of the index to "Load Case"
df2.index.name = 'Load Case'

Add 1 to all indices
df2.index += 1

df2

Out[5]: N [kN] A [mm2] sigma_n [MPa]
Load Case
1 85 314 0.270701
2 56 314 0.178344
3 120 314 0.382166

1.3 Extracting a subset of data

We can extract specific columns from the DataFrame:

In [6]: # Extract only the stress column to new DataFrame
df2[['sigma_n [MPa]']]

Out[6]: sigma_n [MPa]
Load Case
1 0.270701
2 0.178344
3 0.382166

• Note: The use of two square bracket pairs [[]] turns the result into a new DataFrame, with
just one column. If there had been only a single square bracket, the result would be a Series
object. See below.

In [7]: # Extract stress column to Series object
df2['sigma_n [MPa]']

3

Out[7]: Load Case
1 0.270701
2 0.178344
3 0.382166
Name: sigma_n [MPa], dtype: float64

Most of the time, we want to keep working with DataFrames, so remember to put double
square brackets.

Double square brakcets must be used if we want to extract more than one column. Otherwise,
a KeyError will be raised.

In [8]: # Extract multiple columns to DataFrame
df2[['N [kN]', 'sigma_n [MPa]']]

Out[8]: N [kN] sigma_n [MPa]
Load Case
1 85 0.270701
2 56 0.178344
3 120 0.382166

1.4 Importing data from file to DataFrame

Data can be imported from various file types. The most common ones are probably standard text
files (.txt), comma separated value files (.csv) or Excel files (.xlsx)

Some common scenarios

Import from .csv (comma separated values)
pd.read_csv('<file_name>.csv')

Import from .txt with values separated by white space
pd.read_csv('<file_name>.txt', delim_whitespace=True)

Import from Excel
pd.read_excel('<file_name>.xlsx', sheet_name='<sheet_name>')

The above assumes that the files to import are located in the same directory as the script.
Placing it there makes it easier to do the imports.

The functions above have many optional arguments. When importing from an Excel workbook
it will often be necessary to specify more parameters than when importing a plain text file, because
the Excel fil is a lot more complex. For example, by default the data starts at cell A1 as the top left
and the default sheet is the first sheet occuring in the workbook, but this is not always what is
wanted.

See docs for both functions here:

• panda.read_csv(): https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
• panda.read_excel(): https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.read_excel.html

4

1.5 Import example

In [9]: # Import data from 'HEA.txt', which has data separated
by white spaces
df = pd.read_csv('HEA.txt', delim_whitespace=True)
df

Out[9]: Profile h[mm] b[mm] Iy[mm4] Wel,y[mm3] g[kg/m]
0 HE100A 96 100 3490000 72.8 16.7
1 HE120A 114 120 6060000 106.0 19.9
2 HE140A 133 140 10300000 155.0 24.7
3 HE160A 152 160 16700000 220.0 30.4
4 HE180A 171 180 25100000 294.0 35.5
5 HE200A 190 200 36900000 389.0 42.3
6 HE220A 210 220 54100000 515.0 50.5
7 HE240A 230 240 77600000 675.0 60.3
8 HE260A 250 260 104500000 836.0 68.2
9 HE280A 270 280 136700000 1010.0 76.4
10 HE300A 290 300 182600000 1260.0 88.3

1.6 Filtering data

Data filtering is easy and intuitive. It is done by conditional expressions.
For example, if we want to filter the HEA-DataFrame for profiles with moment of inertia Iy

larger than some value:

In [10]: df[df['Iy[mm4]'] > 30000000]

Out[10]: Profile h[mm] b[mm] Iy[mm4] Wel,y[mm3] g[kg/m]
5 HE200A 190 200 36900000 389.0 42.3
6 HE220A 210 220 54100000 515.0 50.5
7 HE240A 230 240 77600000 675.0 60.3
8 HE260A 250 260 104500000 836.0 68.2
9 HE280A 270 280 136700000 1010.0 76.4
10 HE300A 290 300 182600000 1260.0 88.3

1.6.1 Understanding the filtering process

The inner expression of the filtering

df['Iy[mm4]'] > 30000000

returns the column Iy[mm4] from the DataFrame converted into a boolean Series. I.e. a Series
with True/False in each row depending on the condition being fulfilled or not. See the printout
below.

In [11]: # Inner expression returns a boolean Series of Iy[mm4]
df['Iy[mm4]'] > 30000000

5

Out[11]: 0 False
1 False
2 False
3 False
4 False
5 True
6 True
7 True
8 True
9 True
10 True
Name: Iy[mm4], dtype: bool

This boolean Series is used to filter the original DataFrame, which is done in the outer expres-
sion by df[boolean_series].

The outer expression picks only the rows from the orignal DataFrame where the boolean series
is True.

1.7 Filtering by multiple conditions

Filtering based on multiple conditions can be quite powerful. The syntax is only slightly more
complicated

In [12]: df[(df['Iy[mm4]'] > 30000000) & (df['h[mm]'] < 260)]

Out[12]: Profile h[mm] b[mm] Iy[mm4] Wel,y[mm3] g[kg/m]
5 HE200A 190 200 36900000 389.0 42.3
6 HE220A 210 220 54100000 515.0 50.5
7 HE240A 230 240 77600000 675.0 60.3
8 HE260A 250 260 104500000 836.0 68.2

Filtering can also be based on lists of values:

In [13]: # Valid profiles to choose from
valid_profiles = ['HE180A', 'HE220A', 'HE260A', 'HE280A']

Filter DataFrame based in Iy and valid profiles
df[(df['Iy[mm4]'] > 30000000) & (df['Profile'].isin(valid_profiles))]

Out[13]: Profile h[mm] b[mm] Iy[mm4] Wel,y[mm3] g[kg/m]
6 HE220A 210 220 54100000 515.0 50.5
8 HE260A 250 260 104500000 836.0 68.2
9 HE280A 270 280 136700000 1010.0 76.4

If we want to rule out some profiles, we could put a ~ in front of the condition to specify that
values must not be present in the list:

In [14]: # Invalid profiles
invalid_profiles = ['HE180A', 'HE220A', 'HE260A', 'HE280A']

Filter DataFrame based in Iy and valid profiles
df[(df['Iy[mm4]'] > 30000000) & (~df['Profile'].isin(invalid_profiles))]

6

Out[14]: Profile h[mm] b[mm] Iy[mm4] Wel,y[mm3] g[kg/m]
5 HE200A 190 200 36900000 389.0 42.3
7 HE240A 230 240 77600000 675.0 60.3
10 HE300A 290 300 182600000 1260.0 88.3

1.8 Exporting a DataFrame to a file

Exporting a DataFrame to a new text file could not be easier. Saving to a .txt:

1.9 GroupBy

groupby provides a way to split a DataFrame into groups based on some condition, apply a func-
tion to those groups and combine the results into a new DataFrame that is returned.

1.9.1 An example

In [15]: # Create a dataframe to work with
dff = pd.DataFrame({'Fruit': ['Pear', 'Apple', 'Apple', 'Banana',

'Lemon', 'Banana', 'Banana', 'Pear'],
'Amount_sold': [3, 6, 7, 2, 4, 7, 1, 6]})

dff

Out[15]: Fruit Amount_sold
0 Pear 3
1 Apple 6
2 Apple 7
3 Banana 2
4 Lemon 4
5 Banana 7
6 Banana 1
7 Pear 6

The DataFrame.groupby method itself returns a groupby object, not a DataFrame. So printing
that on its own will just show you the object.

In [71]: # The gropuby will return a groupby object
dff.groupby('Fruit')

Out[71]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x000001B716413978>

The object contains metadata about how the data is grouped. The powerful operations are
visible only after we apply a certain function to the groupby object, like sum():

In [17]: dff.groupby('Fruit').sum()

Out[17]: Amount_sold
Fruit
Apple 13
Banana 10
Lemon 4
Pear 9

7

We could say that we first split the DataFrame in fruit groups, applied a function to those
individual groups and combined and returned the results.

Note that by default the column that was grouped by becomes the new index, since these are
now unique values.

1.9.2 Documentation

Documentation for groupby: http://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.groupby.html Documentation for apply:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html

1.10 Printing with df.head() and df.tail()

When DataFrames become very large, printing all the data to the screen becomes unwieldy. Print-
ing is mostly done only to make sure that some operation worked as we expected it would. In that
case, printing just a few rows will be sufficient, which the following methods will alloww for:

Print the first 5 rows of df
df.head()

Print the last 5 rows of df
df.tail()

Print the first x rows of df
df.head(x)

Print the last y rows of df
df.tail(y)

1.11 Something to be aware of

A potentially confusing thing about pandas methods is that it can be hard to know which mutates
the DataFrame inplace and which needs to be saved to a new varaible. Consider the lines below:

You will most likely stumble across this when working with pandas. Note that there is no
error when when executing the first line shown above, but when df is eventually printed it will
just not be as intended.

1.12 Much more functionality

There are numerous functions and methods available in pandas and the above mentioned barely
scrathes the surface.

Practically anything that you would want to do to a dataset can be done. And quite possibly
somebody has had the same problem as you before and found a solution or maybe even even
contributed to the pandas library and put in that functionality for everyone to use. However,
some functionality can be much harder to understand and use than the above mentioned.

The pandas library integrates well with other big libraries like numpy and matplotlib and
other functionality in the Python language in general. For example, many DataFrame methods
can take as input a customly defined function def ...() and run it through certian content of the
DataFrame.

8

Plotting with matplotlib is directly supported in pandas via shortcuts so you can do
df.plot() and it will create a plot of the DataFrame of a specified kind even without having
to import matplotlib.

1.13 When and why to use pandas

• The manipulations that can be done with pandas are quite powerful when datasets become
much larger than ones shown above. It is especially helpful when the dataset reaches a size
where all data can not be viewed and understood well by simply scrolling down and looking
at the data. If the number of rows go beyond just a couple of thousands, it is hard to get the
overall feel for the data and its trends just by inspection. This is were typing logic commands
to do manipulations becomes a great help.

• Use it when a very specific solution for data manipulation is desired. Especially when the
solution is not trivially done in for example Excel.

• It is a good tool for combining multiple datasets, e.g. from different files.

• Last but not least, it is good for reproducibility and handling changes in data size.

2 Exercise 1.1

All exercises 1.x are working with the same DataFrame.

Create a DataFrame from the dictionary d below. Save it is a variable called df.
Print/display the entire DataFrame to see it if it comes out as you expect.
Remember to import pandas as pd.

3 Exercise 1.2

Print/display the only the first or last rows by using DataFrame.head() or DataFrame.tail().
You choose how many rows to print (default is 5).

Use these methods to test print the DataFrames from now on to avoid printing all rows.

4 Exercse 1.3

Filter df to only contain the rows where the uppercase letter is 'K'. Save it to a new variable called
dfk.

Print/display it to make sure it it correct.
If you were unlucky and did not have a 'K' generated in the uppercase column, try re-running the code.

9

5 Exercise 1.4

When printing the filtered dfk, notice that the index from the original DataFrame is kept. This is
often useful for back reference, but sometimes we want the index to be reset.

Reset the index of dfk to start from 0 by using DataFrame.reset_index(). This method does
not modify the DataFrame inplace by default, so remember to either save to a new variable or give
the input argument inplace=True.

By default, the orignal index will be added as a new column to the DataFrame. If you don’t
want this, use the input argument drop=True.

6 Exercise 2.1

All exercises 2.x are to be seen as the same problem. It has just been divided into smaller tasks.

Remove column 'column_name' form 'df'
df = df.drop('column_name', axis=1)

Plot dataframe contents
df.plot(kind='bar', x='column_for_x_values', y='column_for_y_values')

The method has many optional arguments, see https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.plot.html.

Try for example to change the figure size by figsize=(width, height), rotate the x-ticks by
rot=angle_in_degrees and change the color of the bars by color='some_color'.

7 If you are up for more

Create a loop that goes through all shear keys, creates a plot like the one from the previous exercise
and saves each plot to a png-file.

In []:

10

	Pandas Dataframes
	Creating a simple DataFrame
	Presenting results with DataFrames
	Adjusting the index column

	Extracting a subset of data
	Importing data from file to DataFrame
	Import example
	Filtering data
	Understanding the filtering process

	Filtering by multiple conditions
	Exporting a DataFrame to a file
	GroupBy
	An example
	Documentation

	Printing with df.head() and df.tail()
	Something to be aware of
	Much more functionality
	When and why to use pandas

	Exercise 1.1
	Exercise 1.2
	Exercse 1.3
	Exercise 1.4
	Exercise 2.1
	If you are up for more

