Getting Started with Computer Vision

By

Navaneeth Malingan Al and IoT Researcher, Developer, Educator Nivu Academy, Nunnari Labs

Computer vision is the field of computer science that focuses on replicating parts of the complexity of the human vision system and enabling computers to identify and process objects in images and videos in the same way that humans do.

At an abstract level, the goal of computer vision problems is to use the observed image data to infer something about the world.

Working on Computer Vision is equivalent to working on millions of calculations in the blink of an eye with almost same accuracy as that of a human eye.

If We Want Machines to Think, We Need to Teach Them to See.

<u>- Fei Fei Li,</u>

Director of <u>Stanford AI</u> <u>Lab</u> and <u>Stanford Vision</u> Lab

Navaneeth Malingan, Nivu Academy & Nunnari Labs

88

Agenda

- Images and its Properties
- Traditional Computer Vision
- Deep Learning
- CNN

Areas that deal with Images

How Human Vision Works?

Vision begins with the eyes, but it truly takes place in the brain.

How do Machines see?

Data

- Images
- Videos
- 3D Models

Images as Pixels

157	153	174	168	150	152	129	151	172	161	155	156	157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154	155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181	180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180	206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201	194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98	74	206	172	105	207	233	233	214	220	239	228	98	74	206
188	- 88	179	209	185	215	211	158	139	75	20	169	188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148	189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190	199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234	206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	85	150	79	38	218	241	190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224	190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215	190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211	187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236	183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218	196	206	123	207	177	121	123	200	175	13	96	218

Represent colors by numbers: In computer science, each color is represented by a specified HEX value. That is how machines are programmed to understand what colors the image pixels are made up. Whereas as humans we have an inherited knowledge to differ between the shades.

© Precontitude

Color Spaces

- RGB
- HSV
- HSL

 There is also HSV color space (hue, saturation, and value), and HLS space (hue, lightness, and saturation). These are some of the most commonly used color spaces in image analysis.

HLS Color Space

Yellow Line

Many popular computer vision applications involve trying to recognize things in photographs; for example:

- Image Classification: What broad category of object is in this photograph?
- **Object Identification**: Which type of a given object is in this photograph?
- **Object Verification**: Is the object in the photograph?
- **Object Detection**: Where are the objects in the photograph?
- Object Landmark Detection: What are the key points for the object in the photograph?
- Image Segmentation: What pixels belong to the object in the image?
- **Object Recognition**: What objects are in this photograph and where are they?
- **Object Tracking**: Where is the object in the video frames?
- Image Generation: Generate new images
- OCR: Image to Text

Outside of just recognition, other methods of analysis include:

- Video motion analysis uses computer vision to estimate the velocity of objects in a video, or the camera itself.
- In **image segmentation**, algorithms partition images into multiple sets of views.
- Scene reconstruction creates a 3D model of a scene inputted through images or video.
- In **image restoration**, noise such as blurring is removed from photos using Machine Learning based filters.

SoAl CV Curriculum

- Low Level Vision (Image to Image)
 - Basic Image Processing
 - Optical Flow
- Mid Level Vision (Image to Features)
 - Basic Segmentation
 - Fitting
- Multiple Views
 - Multiple Images
 - 3D Scenes
- High Level Vision (Features to Analysis)
 - Object Detection and Classification
 - Modern Deep Learning

1. Low Level Vision : Image Brightness

2. Mid Level Vision : Contour Detection

Number of polygons 12 Author - Navaneeth Malingan, Nivu Academy & Nunnari Labs

Mid Level Vision : Edge Detection

Mid Level Vision : Edge Detection If we apply the Sobel x and y operators to this image:

Sobel x

Sobel y

3. Multiple Views : Image Stitching

Multiple Views : Perspective Transform

Multiple Views : Roads (Birds Eye View)

SDC Camera Calibration

Extras

Sensors	Spatial Resolution	3D	Cost			
Radar + Lidar	Low	Yes	\$\$\$			
Single Camera	High	No	\$			

Distortion

 Image distortion occurs when a camera looks at 3D objects in the real world and transforms them into a 2D image; this transformation isn't perfect. Distortion actually changes what the shape and size of these 3D objects appear to be. So, the first step in analyzing camera images, is to undo this distortion so that you can get correct and useful information out of them.

Why is it important to correct for image distortion?

- Distortion can change the apparent size of an object in an image.
- Distortion can change the apparent shape of an object in an image.
- Distortion can cause an object's appearance to change depending on where it is in the field of view.
- Distortion can make objects appear closer or farther away than they actually are.

Light rays bend at edges of camera lens

Using these distortion coefficients we can undistorted camera images

- Radial Distortion
- Tangential Distortion
- Purposeful distortions like (fish eye, wide-angle)

4. High Level Vision : Deep Learning (CNN)

Computer Vision Learning Path

- Learn Computer Vision
 - https://www.youtube.com/watch?v=FSe_02FpJas
 - <u>https://github.com/llSourcell/Learn Computer Vision</u>
- Computer Vision, PyImageSearch
 - <u>https://www.pyimagesearch.com/start-here/</u>
 - <u>https://www.pyimagesearch.com/pyimagesearch-gurus/</u>

Applications

Self driving cars

Autonomous Drones

Healthcare

Face Recognition and Authentication

Surveillance

Other few Application

- Optical character recognition (OCR)
- Machine inspection
- Retail (e.g. automated checkouts)
- 3D model building (photogrammetry)
- Medical imaging
- Automotive safety
- Match move (e.g. merging CGI with live actors in movies)
- Motion capture (mocap)
- Surveillance
- Fingerprint recognition and biometrics

Other Cool Computer Vision Applications using Deep Learning

Deep Fakes

Pose Transfer

CycleGans are used to convert one source of domain to another source and vice versa

Style Transfer

GANs can create fake celebrity faces

Deep Learning Revolution

Deep Learning

Until recently, computer vision only worked in limited capacity.

Thanks to advances in artificial intelligence and innovations in deep learning and neural networks, the field has been able to take great leaps in recent years and has been able to surpass humans in some tasks related to detecting and labeling objects.

Traditional Computer Vision VS Deep Learning Approach

Why Deep Learning? Scalable Machine Learning

Massachusetts

Institute of Technology

Why AI Now?

Author - Navaneeth Malingan, Nivu Academy & Nunnari Labs

ML Hardware

Google TPU

Cloud TPU is designed to run cutting-edge machine learning models with AI services on Google Cloud. And its custom high-speed network offers up to 11.5 petaflops of performance in a single pod.

Nvidia GPU

NVIDIA CUDA is the world leader in high-performance parallel computing on GPUs.

Even before the creation of CUDA, NVIDIA was a pioneer in the creation of innovative algorithms and applications to bring GPU Computing to the world.

Intel ML Kit

Harnessing silicon designed specifically for AI, end to end solutions that broadly span from the data center to the edge, and tools that enable customers to quickly deploy and scale up, Intel AI is inside AI and leading the next evolution of compute.

Computer Vision Tools and Library

- OpenCV
- Dlib
- Imutils
- TensorFlow
- PyTorch
- Matlab
- Scipy and Numpy

Computer Vision as Service:

- Google Cloud and Mobile Vision APIs
- Amazon Rekognition
- Microsoft Azure Computer Vision API
- All these services enables developers to perform image processing by encapsulating powerful machine learning models in a simple REST API that can be called in an application to add image and video analysis to your applications.
- The service can identify objects, text, people, scenes and activities, and it can also detect inappropriate content, apart from providing highly accurate facial analysis and facial recognition for sentiment analysis and OCR.

Neural Network

Artificial Neural Network

MNIST Feed Forward

CNN

Convolutional Neural Network

Color Spaces : Grayscale, RGB, HSV, CMYK, etc.

Convolution Layer — The Kernel

Pooling (Reduces Dimensions and Removes Noise)

MNIST Feed Forward

MNIST CNN

The Challenge of Deep Learning

- Ask the right question and know what the answer means: image classification ≠ scene understanding
- Select, collect, and organize the right data to train on: photos ≠ synthetic ≠ real-world video frames

Author - Navaneeth Malingan, Nivu Academy & Nunnari Labs

For the full list of references visit: https://hcai.mit.edu/references https://deeplearning.mit.edu 2019

Pure Perception is Hard

For the full list of references visit:

Massachusetts Institute of

Technology

https://hcai.mit.edu/references

Author - Navaneeth Malingan, Nivu Academy & Nunnari Labs [66] https://deeplearning.mit.edu 2019

Visual Understanding is Harder

Examples of what we can't do well:

- Mirrors
- Sparse information
- 3D Structure
- Physics
- What's on peoples' minds?
- What happens next?

https://hcai.mit.edu/references

• Humor

Deep Learning:

Our intuition about what's "hard" is flawed (in complicated ways)

Visual perception:540,000,000 years of dataBipedal movement:230,000,000 years of dataAbstract thought:100,000 years of data

Prediction: **Dog** + Distortion Prediction: **Ostrich**

"Encoded in the large, highly evolve sensory and motor portions of the human brain is a **billion years of experience** about the nature of the world and how to survive in it.... Abstract thought, though, is a new trick, perhaps less than **100 thousand years** old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it."

- Hans Moravec, Mind Children (1988)

Deep Learning from Human and Machine

Author - Navaneeth Malingan, Nivu Academy & Nunnari Labs https://deeplearning.mit.edu 2019

Data Augmentation

Crop:

Scale:

Rotate:

Translation:

 Author
 - Navaneeth Malingan, Nivu Academy & Nunnari Labs

 For the full updated list of references visit:
 [294]
 https://deeplearning.mit.edu/references
 2019

Neuron: Biological Inspiration for Computation

Biological and Artificial Neural Networks

Human Brain

- Thalamocortical system:
 3 million neurons
 476 million synapses
- Full brain: 100 billion neurons 1,000 trillion synapses

Artificial Neural Network

ResNet-152:
 60 million synapses

Human brains have ~10,000,000 times synapses than artificial neural networks.

Neuron: Biological Inspiration for Computation

 Neuron: computational building block for the brain

 (Artificial) Neuron: computational building block for the "neural network"

Institute of Technology

Key Difference:

- Parameters: Human brains have ~10,000,000 times synapses than artificial neural networks.
- Topology: Human brains have no "layers". Async: The human brain works asynchronously, ANNs work synchronously.
- Learning algorithm: ANNs use gradient descent for learning. We don't know what human brains use
- Power consumption: Biological neural networks use very little power compared to artificial networks
- Stages: Biological networks usually never stop learning. ANNs first train then test.

Compute Hardware

- **CPU** serial, general purpose, everyone has one
- **GPU** parallelizable, still general purpose
- **TPU** custom ASIC (Application-Specific Integrated Circuit) by Google, specialized for machine learning, low precision

For the full list of references visit: [273] https://hcai.mit.edu/references

https://deeplearning.mit.edu 2019

Convolutional Neural Networks: Image Classification

• Convolutional filters: take advantage of spatial invariance

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters

• ZFNet (2013): 15.4% to 11.2%

- 8 layers
- More filters. Denser stride.

• VGGNet (2014): 11.2% to 7.3%

- Beautifully uniform: 3x3 conv, stride 1, pad 1, 2x2 max pool
- 16 layers
- 138 million parameters

GoogLeNet (2014): 11.2% to 6.7%

- Inception modules
- 22 layers
- 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models
- SENet (2017): 2.99% to 2.251%
 - Squeeze and excitation block: network is allowed to adaptively adjust the weighting of each feature map in the convolutional block.

https://deeplearning.mit.edu 2019

Object Detection / Localization

Region-Based Methods | Shown: Faster R-CNN

for ROI in ROIs
 patch = get_patch(image, ROI)
 results = detector(patch)

Massachusetts

Institute of

Technology

For the full list of references visit:

https://hcai.mit.edu/references

Author - Navaneeth Malingan, Nivu Academy & Nunnari Labs [299] https://

Object Detection / Localization

Single-Shot Methods | Shown: SSD

ackpack

Object Detection: State of the Art Progress

Semantic Segmentation

Dense Upsampling Conv. (DUC)

Encoding

H

Massachusetts Institute of

Technology

For the full list of references visit: https://hcai.mit.edu/references

Η

SegNet (Nov 2015)

Paper: "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

• Maxpooling indices transferred to decoder to improve the segmentation resolution.

Transfer Learning

- Fine-tune a pre-trained model
- Effective in many applications: computer vision, audio, speech, natural language processing

Autoencoders

http://projector.tensorflow.org/

Generative Adversarial Network (GANs)

Generative Adversarial Networks (GANs) are a way to make a generative model by having two neural networks compete with each other.

Massachusetts

Institute of Technology The **discriminator** tries to distinguish genuine data from forgeries created by the generator.

The **generator** turns random noise into immitations of the data, in an attempt to fool the discriminator.

Progressive GAN 10/2017 1024 x 1024

Author - Navaneeth Malingan, Nivu Academy & Nunnari Labs For the full updated list of references visit: https://selfdrivingcars.mit.edu/references
[302, 303, 304]
https://deeplearning.mit.edu
2019

How do I Start?

Best places to Start

https://github.com/soaicbe/ai all resources

An Ultimate Compilation of AI Resources for Mathematics, Machine Learning and Deep Learning.

An Ultimate Compilation of AI Resources for Mathematics, Machine Learning and Deep Learning

Knowledge Not Shared is wasted - Clan Jacobs

This collection is a compilation of Excellent ML and DL Tutorials created by the people below

- Andrej Karpathy blog
- Brandon Roher
- Andrew Trask
- Jay Alammar
- Sebastian Ruder
- Distill
- StatQuest with Josh Starmer
- sentdex
- Lex Fridman
- 3Blue1Brown
- Alexander Amini
- The Coding Train

Computer Vision Learning Path

- Learn Computer Vision
 - https://www.youtube.com/watch?v=FSe_02FpJas
 - <u>https://github.com/llSourcell/Learn_Computer_Vision</u>
- Computer Vision, PyImageSearch
 - <u>https://www.pyimagesearch.com/start-here/</u>
 - <u>https://www.pyimagesearch.com/pyimagesearch-gurus/</u>
- <u>https://medium.com/readers-writers-digest/beginners-guide-to-computer-vision-23606224b720</u>

https://www.ted.com/talks/fei fei li how we re teaching computers to understand pictures

Shall I start Tomorrow?

Math for ML

Matrix Multiplication

Neural Network

Machine Learning theory is a field that intersects statistical, probabilistic, computer science and algorithmic aspects arising from learning iteratively from data and finding hidden insights which can be used to build intelligent applications.

Why need Math in ML?

- Why something works?
- Why one model is better than other?
- Selecting the right algorithm which includes giving considerations to accuracy, training time, model complexity, number of parameters and number of features.
- Choosing parameter settings and validation strategies.
- Identifying underfitting and overfitting by understanding the Bias-Variance tradeoff.
- Estimating the right confidence interval and uncertainty.

Math for ML Resources

https://nivu.me/posts/mathematics-for-machine-learning/

Reach out to me

Navaneeth Malingan

Mobile : 9047578585

Email: mail@nivu.me

Blog: <u>https://nivu.me</u>

LinkedIn: https://www.linkedin.com/in/nivu/

Twitter: https://twitter.com/nivu07

Author - Navaneeth Malingan, Nivu Academy & Nunnari Labs

•

Thank You

TensorFlow User Group

Author - Navaneeth Malingan, Nivu Academy & Nunnari Labs