__author__ = 'm.bashari' import numpy as np from sklearn import datasets, linear_model import matplotlib.pyplot as plt class Config: nn_input_dim = 2 # input layer dimensionality nn_output_dim = 2 # output layer dimensionality # Gradient descent parameters (I picked these by hand) epsilon = 0.01 # learning rate for gradient descent reg_lambda = 0.01 # regularization strength def generate_data(): np.random.seed(0) X, y = datasets.make_moons(200, noise=0.20) return X, y def visualize(X, y, model): # plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral) # plt.show() plot_decision_boundary(lambda x:predict(model,x), X, y) plt.title("Logistic Regression") def plot_decision_boundary(pred_func, X, y): # Set min and max values and give it some padding x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole gid Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral) plt.show() # Helper function to evaluate the total loss on the dataset def calculate_loss(model, X, y): num_examples = len(X) # training set size W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2'] # Forward propagation to calculate our predictions z1 = X.dot(W1) + b1 a1 = np.tanh(z1) z2 = a1.dot(W2) + b2 exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # Calculating the loss corect_logprobs = -np.log(probs[range(num_examples), y]) data_loss = np.sum(corect_logprobs) # Add regulatization term to loss (optional) data_loss += Config.reg_lambda / 2 * (np.sum(np.square(W1)) + np.sum(np.square(W2))) return 1. / num_examples * data_loss def predict(model, x): W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2'] # Forward propagation z1 = x.dot(W1) + b1 a1 = np.tanh(z1) z2 = a1.dot(W2) + b2 exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) return np.argmax(probs, axis=1) # This function learns parameters for the neural network and returns the model. # - nn_hdim: Number of nodes in the hidden layer # - num_passes: Number of passes through the training data for gradient descent # - print_loss: If True, print the loss every 1000 iterations def build_model(X, y, nn_hdim, num_passes=20000, print_loss=False): # Initialize the parameters to random values. We need to learn these. num_examples = len(X) np.random.seed(0) W1 = np.random.randn(Config.nn_input_dim, nn_hdim) / np.sqrt(Config.nn_input_dim) b1 = np.zeros((1, nn_hdim)) W2 = np.random.randn(nn_hdim, Config.nn_output_dim) / np.sqrt(nn_hdim) b2 = np.zeros((1, Config.nn_output_dim)) # This is what we return at the end model = {} # Gradient descent. For each batch... for i in range(0, num_passes): # Forward propagation z1 = X.dot(W1) + b1 a1 = np.tanh(z1) z2 = a1.dot(W2) + b2 exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # Backpropagation delta3 = probs delta3[range(num_examples), y] -= 1 dW2 = (a1.T).dot(delta3) db2 = np.sum(delta3, axis=0, keepdims=True) delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2)) dW1 = np.dot(X.T, delta2) db1 = np.sum(delta2, axis=0) # Add regularization terms (b1 and b2 don't have regularization terms) dW2 += Config.reg_lambda * W2 dW1 += Config.reg_lambda * W1 # Gradient descent parameter update W1 += -Config.epsilon * dW1 b1 += -Config.epsilon * db1 W2 += -Config.epsilon * dW2 b2 += -Config.epsilon * db2 # Assign new parameters to the model model = {'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2} # Optionally print the loss. # This is expensive because it uses the whole dataset, so we don't want to do it too often. if print_loss and i % 1000 == 0: print("Loss after iteration %i: %f" % (i, calculate_loss(model, X, y))) return model def classify(X, y): # clf = linear_model.LogisticRegressionCV() # clf.fit(X, y) # return clf pass def main(): X, y = generate_data() model = build_model(X, y, 3, print_loss=True) visualize(X, y, model) if __name__ == "__main__": main()