# %% 1 # Package imports import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model import matplotlib # Display plots inline and change default figure size %matplotlib inline matplotlib.rcParams['figure.figsize'] = (10.0, 8.0) # %% 2 np.random.seed(3) X, y = sklearn.datasets.make_moons(200, noise=0.20) plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral) # %% 3 # Train the logistic rgeression classifier clf = sklearn.linear_model.LogisticRegressionCV() clf.fit(X, y) # %% 4 # Helper function to plot a decision boundary. # If you don't fully understand this function don't worry, it just generates the contour plot below. def plot_decision_boundary(pred_func): # Set min and max values and give it some padding x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole gid Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral) # %% 12 # Plot the decision boundary plot_decision_boundary(lambda x: clf.predict(x)) plt.title("Logistic Regression") # %% 15 num_examples = len(X) # training set size nn_input_dim = 2 # input layer dimensionality nn_output_dim = 2 # output layer dimensionality # Gradient descent parameters (I picked these by hand) epsilon = 0.01 # learning rate for gradient descent reg_lambda = 0.01 # regularization strength # %% 7 # Helper function to evaluate the total loss on the dataset def calculate_loss(model): W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2'] # Forward propagation to calculate our predictions z1 = X.dot(W1) + b1 a1 = np.tanh(z1) z2 = a1.dot(W2) + b2 exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # Calculating the loss corect_logprobs = -np.log(probs[range(num_examples), y]) data_loss = np.sum(corect_logprobs) # Add regulatization term to loss (optional) data_loss += reg_lambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2))) return 1./num_examples * data_loss # %% 8 # Helper function to predict an output (0 or 1) def predict(model, x): W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2'] # Forward propagation z1 = x.dot(W1) + b1 a1 = np.tanh(z1) z2 = a1.dot(W2) + b2 exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) return np.argmax(probs, axis=1) # %% 16 # This function learns parameters for the neural network and returns the model. # - nn_hdim: Number of nodes in the hidden layer # - num_passes: Number of passes through the training data for gradient descent # - print_loss: If True, print the loss every 1000 iterations def build_model(nn_hdim, num_passes=20000, print_loss=False): # Initialize the parameters to random values. We need to learn these. np.random.seed(0) W1 = np.random.randn(nn_input_dim, nn_hdim) / np.sqrt(nn_input_dim) b1 = np.zeros((1, nn_hdim)) W2 = np.random.randn(nn_hdim, nn_output_dim) / np.sqrt(nn_hdim) b2 = np.zeros((1, nn_output_dim)) # This is what we return at the end model = {} # Gradient descent. For each batch... for i in range(0, num_passes): # Forward propagation z1 = X.dot(W1) + b1 a1 = np.tanh(z1) z2 = a1.dot(W2) + b2 exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # Backpropagation delta3 = probs delta3[range(num_examples), y] -= 1 dW2 = (a1.T).dot(delta3) db2 = np.sum(delta3, axis=0, keepdims=True) delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2)) dW1 = np.dot(X.T, delta2) db1 = np.sum(delta2, axis=0) # Add regularization terms (b1 and b2 don't have regularization terms) dW2 += reg_lambda * W2 dW1 += reg_lambda * W1 # Gradient descent parameter update W1 += -epsilon * dW1 b1 += -epsilon * db1 W2 += -epsilon * dW2 b2 += -epsilon * db2 # Assign new parameters to the model model = { 'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2} # Optionally print the loss. # This is expensive because it uses the whole dataset, so we don't want to do it too often. if print_loss and i % 1000 == 0: print("Loss after iteration %i: %f" %(i, calculate_loss(model))) return model # %% 17 # Build a model with a 3-dimensional hidden layer model = build_model(3, print_loss=True) # Plot the decision boundary plot_decision_boundary(lambda x: predict(model, x)) plt.title("Decision Boundary for hidden layer size 3") # %% 14 plt.figure(figsize=(16, 32)) hidden_layer_dimensions = [1, 2, 3, 4, 5, 20, 50] for i, nn_hdim in enumerate(hidden_layer_dimensions): plt.subplot(5, 2, i+1) plt.title('Hidden Layer size %d' % nn_hdim) model = build_model(nn_hdim) plot_decision_boundary(lambda x: predict(model, x)) plt.show()