# nyaggle ![GitHub Actions CI Status](https://github.com/nyanp/nyaggle/workflows/Python%20package/badge.svg) ![GitHub Actions CI Status](https://github.com/nyanp/nyaggle/workflows/weekly_test/badge.svg) ![Python Versions](https://img.shields.io/pypi/pyversions/nyaggle.svg?logo=python&logoColor=white) ![Documentation Status](https://readthedocs.org/projects/nyaggle/badge/?version=latest) [**Documentation**](https://nyaggle.readthedocs.io/en/latest/index.html) | [**Slide (Japanese)**](https://docs.google.com/presentation/d/1jv3J7DISw8phZT4z9rqjM-azdrQ4L4wWJN5P-gKL6fA/edit?usp=sharing) **nyaggle** is an utility library for Kaggle and offline competitions. It is particularly focused on experiment tracking, feature engineering, and validation. - **nyaggle.ensemble** - Averaging & stacking - **nyaggle.experiment** - Experiment tracking - **nyaggle.feature_store** - Lightweight feature storage using feather-format - **nyaggle.features** - sklearn-compatible features - **nyaggle.hyper_parameters** - Collection of GBDT hyper-parameters used in past Kaggle competitions - **nyaggle.validation** - Adversarial validation & sklearn-compatible CV splitters ## Installation You can install nyaggle via pip: ```bash pip install nyaggle ``` ## Examples ### Experiment Tracking `run_experiment()` is a high-level API for experiments with cross validation. It outputs parameters, metrics, out of fold predictions, test predictions, feature importance, and submission.csv under the specified directory. To enable mlflow tracking, include the optional `with_mlflow=True` parameter. ```python from sklearn.model_selection import train_test_split from nyaggle.experiment import run_experiment from nyaggle.testing import make_classification_df X, y = make_classification_df() X_train, X_test, y_train, y_test = train_test_split(X, y) params = { 'n_estimators': 1000, 'max_depth': 8 } result = run_experiment(params, X_train, y_train, X_test) # You can get outputs that are needed in data science competitions with 1 API print(result.test_prediction) # Test prediction in numpy array print(result.oof_prediction) # Out-of-fold prediction in numpy array print(result.models) # Trained models for each fold print(result.importance) # Feature importance for each fold print(result.metrics) # Evalulation metrics for each fold print(result.time) # Elapsed time print(result.submission_df) # The output dataframe saved as submission.csv # ...and all outputs have been saved under the logging directory (default: output/yyyymmdd_HHMMSS). # You can use it with mlflow and track your experiments through mlflow-ui result = run_experiment(params, X_train, y_train, X_test, with_mlflow=True) ``` nyaggle also has a low-level API which has similar interface to [mlflow tracking](https://www.mlflow.org/docs/latest/tracking.html) and [wandb](https://www.wandb.com/). ```python from nyaggle.experiment import Experiment with Experiment(logging_directory='./output/') as exp: # log key-value pair as a parameter exp.log_param('lr', 0.01) exp.log_param('optimizer', 'adam') # log text exp.log('blah blah blah') # log metric exp.log_metric('CV', 0.85) # log numpy ndarray, pandas dafaframe and any artifacts exp.log_numpy('predicted', predicted) exp.log_dataframe('submission', sub, file_format='csv') exp.log_artifact('path-to-your-file') ``` ### Feature Engineering #### Target Encoding with K-Fold ```python import pandas as pd import numpy as np from sklearn.model_selection import KFold from nyaggle.feature.category_encoder import TargetEncoder train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') all = pd.concat([train, test]).copy() cat_cols = [c for c in train.columns if train[c].dtype == np.object] target_col = 'y' kf = KFold(5) # Target encoding with K-fold te = TargetEncoder(kf.split(train)) # use fit/fit_transform to train data, then apply transform to test data train.loc[:, cat_cols] = te.fit_transform(train[cat_cols], train[target_col]) test.loc[:, cat_cols] = te.transform(test[cat_cols]) # ... or just call fit_transform to concatenated data all.loc[:, cat_cols] = te.fit_transform(all[cat_cols], all[cat_cols]) ``` #### Text Vectorization using BERT You need to install pytorch to your virtual environment to use BertSentenceVectorizer. MaCab and mecab-python3 are also required if you use the Japanese BERT model. ```python import pandas as pd from nyaggle.feature.nlp import BertSentenceVectorizer train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') all = pd.concat([train, test]).copy() text_cols = ['body'] target_col = 'y' group_col = 'user_id' # extract BERT-based sentence vector bv = BertSentenceVectorizer(text_columns=text_cols) text_vector = bv.fit_transform(train) # BERT + SVD, with cuda bv = BertSentenceVectorizer(text_columns=text_cols, use_cuda=True, n_components=40) text_vector_svd = bv.fit_transform(train) # Japanese BERT bv = BertSentenceVectorizer(text_columns=text_cols, lang='jp') japanese_text_vector = bv.fit_transform(train) ``` ### Adversarial Validation ```python import pandas as pd from nyaggle.validation import adversarial_validate train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') auc, importance = adversarial_validate(train, test, importance_type='gain') ``` ### Validation Splitters nyaggle provides a set of validation splitters that are compatible with sklearn. ```python import pandas as pd from sklearn.model_selection import cross_validate, KFold from nyaggle.validation import TimeSeriesSplit, Take, Skip, Nth train = pd.read_csv('train.csv', parse_dates='dt') # time-series split ts = TimeSeriesSplit(train['dt']) ts.add_fold(train_interval=('2019-01-01', '2019-01-10'), test_interval=('2019-01-10', '2019-01-20')) ts.add_fold(train_interval=('2019-01-06', '2019-01-15'), test_interval=('2019-01-15', '2019-01-25')) cross_validate(..., cv=ts) # take the first 3 folds out of 10 cross_validate(..., cv=Take(3, KFold(10))) # skip the first 3 folds, and evaluate the remaining 7 folds cross_validate(..., cv=Skip(3, KFold(10))) # evaluate 1st fold cross_validate(..., cv=Nth(1, ts)) ``` ### Other Awesome Repositories Here is a list of awesome repositories that provide general utility functions for data science competitions. Please let me know if you have another one :) - [jeongyoonlee/Kaggler](https://github.com/jeongyoonlee/Kaggler) - [mxbi/mlcrate](https://github.com/mxbi/mlcrate) - [analokmaus/kuma_utils](https://github.com/analokmaus/kuma_utils) - [Far0n/kaggletils](https://github.com/Far0n/kaggletils) - [MLWave/Kaggle-Ensemble-Guide](https://github.com/MLWave/Kaggle-Ensemble-Guide) - [rushter/heamy](https://github.com/rushter/heamy)